SKR 2F50

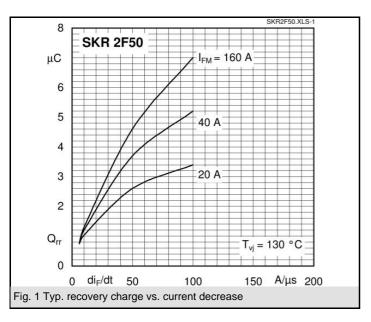
Stud Diode

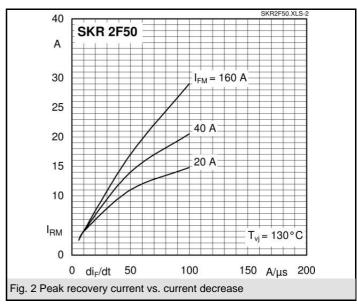
Fast Recovery Rectifier Diode

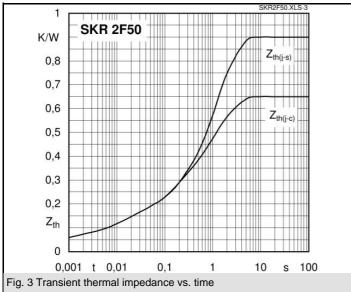
SKR 2F50

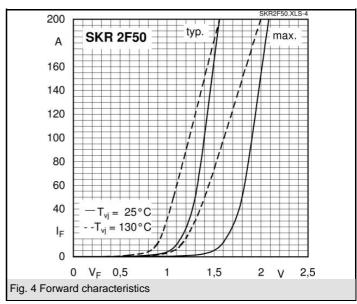
Features

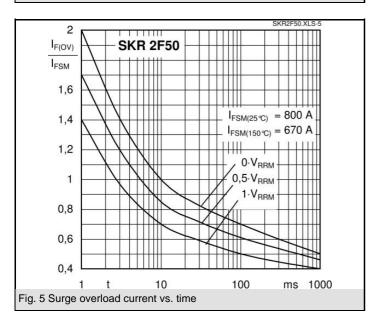
- Small recovered charge
- Soft recovery
- Up to 1000 V reverse voltage
- Hermetic metal case with glass insulator
- Threaded stud ISO M6 or 1/4-28 UNF
- · SKR: cathode to stud

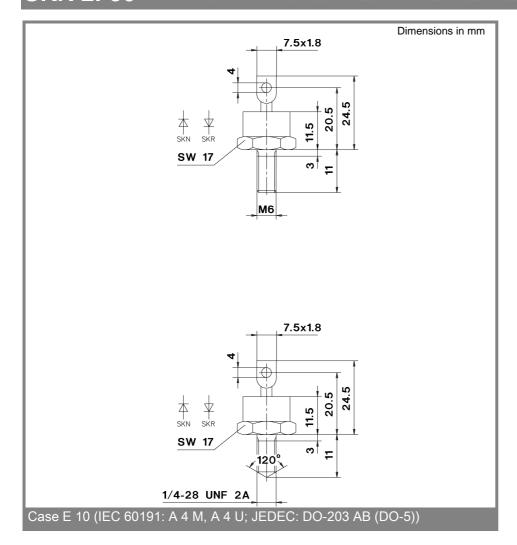

Typical Applications


- Inverse diode for power transistor, GTO thyristor, asymmetric thyristor
- SMPS, inverters, choppers
- For severe ambient conditions


V _{RSM}	V_{RRM}	I _{FRMS} = 100 A (maximum value for continuous operation)		
V	V	I _{FAV} = 50 A (sin. 180; 5000 Hz; T _c = 95 °C)		
400	400	SKR 2F50/04		
400	400	SKR 2F50/04UNF		
600	600	SKR 2F50/06		
600	600	SKR 2F50/06UNF		
800	800	SKR 2F50/08		
800	800	SKR 2F50/08UNF		
1000	1000	SKR 2F50/10		
1000	1000	SKR 2F50/10UNF		


Symbol	Conditions	Values	Units
I_{FAV}	sin. 180; T _c = 85 (100) °C	57 (46)	Α
I_{FAV}	K3; T _a = 45 °C; sin. 180; 5000 Hz	17	
I _{FSM}	T _{vi} = 25 °C; 10 ms	800	Α
	$T_{vj} = 150 ^{\circ}\text{C}; 10 \text{ms}$	670	Α
i²t	$T_{vj} = 25 ^{\circ}\text{C}; 8,3 \dots 10 \text{ms}$	3200	A²s
	$T_{vj} = 150 ^{\circ}\text{C}; 8,3 \dots 10 \text{ms}$	2200	A²s
V _F	T _{vi} = 25 °C; I _F = 50 A	max. 1,8	V
$V_{(TO)}$	T _{vi} = 150 °C	max. 1,2	V
r _T	T _{vi} = 150 °C	max. 4	$m\Omega$
I_{RD}	$T_{vj} = 25 ^{\circ}\text{C}; V_{RD} = V_{RRM}$	max. 0,4	mA
I_{RD}	$T_{vj} = 130^{\circ}C, V_{RD} = V_{RRM}$	max. 50	mA
Q _{rr}	T _{vi} = 130 °C, I _F = 100 A,	3	μC
I _{RM}	$-di/dt = 30 \text{ A/}\mu\text{s}, \text{ V}_{\text{R}} = 30 \text{ V}$	10	Α
t _{rr}		600	ns
E _{rr}		-	mJ
R _{th(j-c)}		0,65	K/W
R _{th(c-s)}		0,25	K/W
T _{vj}		- 40 + 150	°C
T _{stg}		- 55 + 150	°C
V _{isol}		-	V~
M _s	to heatsink	2,5	Nm
а		5 * 9,81	m/s²
m	approx.	20	g
Case		E 10	





This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.