

DECADE COUNTER; DIVIDE-BY-TWELVE COUNTER; 4-BIT BINARY COUNTER

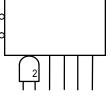
The SN54/74LS90, SN54/74LS92 and SN54/74LS93 are high-speed 4-bit ripple type counters partitioned into two sections. Each counter has a divide-by-two section and either a divide-by-five (LS90), divide-by-six (LS92) or divide-by-eight (LS93) section which are triggered by a HIGH-to-LOW transition on the clock inputs. Each section can be used separately or tied together (Q to CP) to form BCD, bi-quinary, modulo-12, or modulo-16 counters. All of the counters have a 2-input gated Master Reset (Clear), and the LS90 also has a 2-input gated Master Set (Preset 9).

- Low Power Consumption . . T ypically 45 mW
- High Count Rates . . . Typically 42 MHz
- Choice of Counting Modes . . . BCD, Bi-Quinary, Divide-by-Twelve, Binary
- Input Clamp Diodes Limit High Speed Termination Effects

PIN NAMES		LOADIN	G (Note a)
		HIGH	LOW
CP ₀	Clock (Active LOW going edge) Input to ÷2 Section	0.5 U.L.	1.5 U.L.
CP ₁	Clock (Active LOW going edge) Input to ÷5 Section (LS90), ÷6 Section (LS92)	0.5 U.L.	2.0 U.L.
CP ₁	Clock (Active LOW going edge) Input to +8 Section (LS93)	0.5 U.L.	1.0 U.L.
MR_1, MR_2	Master Reset (Clear) Inputs	0.5 U.L.	0.25 U.L.
MS ₁ , MS ₂	Master Set (Preset-9, LS90) Inputs	0.5 U.L.	0.25 U.L.
Q ₀	Output from +2 Section (Notes b & c)	10 U.L.	5 (2.5) U.L.
Q ₁ , Q ₂ , Q ₃	Outputs from ÷5 (LS90), ÷6 (LS92), ÷8 (LS93) Sections (Note b)	10 U.L.	5 (2.5) U.L.

NOTES:

a. 1 TTL Unit Load (U.L.) = 40 μ A HIGH/1.6 mA LOW.


 b. The Output LOW drive factor is 2.5 U.L. for Military, (54) and 5 U.L. for commercial (74) Temperature Ranges.

c. The Q₀ Outputs are guaranteed to drive the full fan-out plus the CP₁ input of the device.

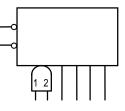
d. To insure proper operation the rise (t_f) and fall time (t_f) of the clock must be less than 100 ns.

V_{CC} = PIN 5 GND = PIN 10 NC = PINS 4, 13

LS92

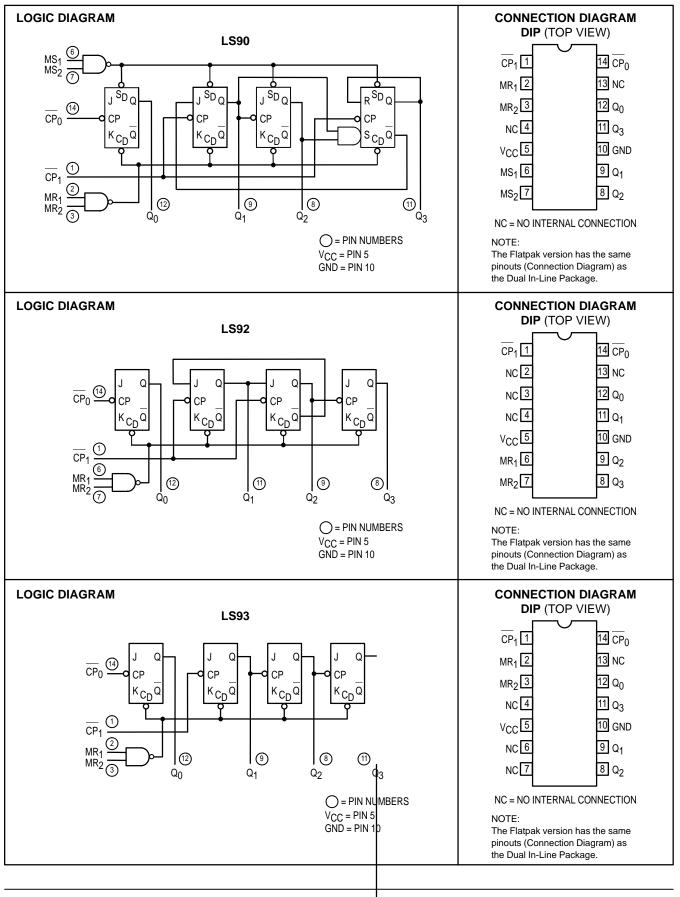
V_{CC} = PIN 5 GND = PIN 10 NC = PINS 2, 3, 4, 13

SN54/74LS90 SN54/74LS92 SN54/74LS93


DECADE COUNTER; DIVIDE-BY-TWELVE COUNTER; 4-BIT BINARY COUNTER

LOW POWER SCHOTTKY

	J SUFFIX CERAMIC CASE 632-08
14 1	N SUFFIX PLASTIC CASE 646-06
Sara and	D SUFFIX SOIC CASE 751A-02
ORDERING IN	FORMATION
SN54LSXXJ SN74LSXXN SN74LSXXD	Ceramic Plastic SOIC


LOGIC SYMBOL

LS93

V_{CC} = PIN 5 GND = PIN 10 NC = PIN 4, 6, 7, 13

5-1

FAST AND LS TTU DATA

FUNCTIONAL DESCRIPTION

The LS90, LS92, and LS93 are 4-bit ripple type Decade, Divide-By-Twelve, and Binary Counters respectively. Each device consists of four master/slave flip-flops which are internally connected to provide a divide-by-two section and a divide-by-five (LS90), divide-by-six (LS92), or divide-by-eight (LS93) section. Each section has a separate clock input which initiates state changes of the counter on the HIGH-to-LOW clock transition. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes. The Q₀ output of each device is <u>de</u>signed and specified to drive the rated fan-out plus the CP₁ input of the device.

A gated AND asynchronous Master Reset ($MR_1 \bullet MR_2$) is provided on all counters which overrides and clocks and resets (clears) all the flip-flops. A gated AND asynchronous Master Set ($MS_1 \bullet MS_2$) is provided on the LS90 which overrides the clocks and the MR inputs and sets the outputs to nine (HLLH).

Since the output from the divide-by-two section is not internally connected to the succeeding stages, the devices may be operated in various counting modes.

LS90

- A. BCD Decade (8421) Counter The CP₁ input must be externally connected to the Q_0 output. The CP₀ input receives the incoming count and a BCD count sequence is produced.
- B. Symmetrical Bi-quinary Divide-By-Ten Counter The Q_3 output must be externally connected to the CP₀ input. The input count is then applied to the CP₁ input and a divide-by-ten square wave is obtained at output Q_0 .

C. Divide-By-Two and Divide-By-Five Counter — No external interconnections are required. The first flip-flop is used as a binary element for the divide-by-two function (CP 1 input is used to obtain binary divide-by-five operation at the Q₃ output.

LS92

- A. Modulo 12, Divide-By-Twelve Counter The CP₁ input must be externally connected to the Q₀ output. The CP₀ input receives the incoming count and Q₃ produces a symmetrical divide-by-twelve square wave output.
- B. Divide-By-Two and Divide-By-Six Counter —No external interconnections are required. The first flip-flop is used as a binary element for the divide-by-two function. The CP₁ input is used to obtain divide-by-three operation at the Q₁ and Q₂ outputs and divide-by-six operation at the Q₃ output.

LS93

- A. 4-Bit Ripple Count<u>er</u> The output Q_0 must be externally connect<u>ed to input CP₁. The input count pulses are applied</u> to input CP₀. Simultaneous divisions of 2, 4, 8, and 16 are performed at the Q_0 , Q_1 , Q_2 , and Q_3 outputs as shown in the truth table.
- B. 3-Bit Ripple Counter— The input count pulses are applied to input CP₁. Simultaneous frequency divisions of 2, 4, and 8 are available at the Q₁, Q₂, and Q₃ outputs. Independent use of the first flip-flop is available if the reset function coincides with reset of the 3-bit ripple-through counter.

LS90 MODE SELECTION

	RESET/SET INPUTS					OUTPUTS					
	MR ₁	MR ₂	MS ₁	MS ₂		Q ₀	Q ₁	Q ₂	Q3		
	Н	Н	L	Х	Iſ	L	L	L	L		
	н	Н	Х	L		L	L	L	L		
	Х	Х	н	н		Н	L	L	Н		
	L	Х	L	Х			Cou	unt			
	Х	L	Х	L		Count					
	L	Х	Х	L		Count					
L	Х	L	L	Х			Cou	unt			

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

LS92 AND LS93 MODE SELECTION

	SET PUTS	OUTPUTS						
MR ₁	MR ₂	Q ₀	Q ₁	Q2	Q3			
Н	н	L	L	L	L			
L	н		Co	unt				
Н	L	Count						
L	L		Co	unt				

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

LS90
BCD COUNT SEQUENCE

COUNT	OUTPUT							
COUNT	Q ₀	Q ₁	Q ₂	Q3				
0	L	L	L	Г				
1	н	L	L	L				
2	L	Н	L	L				
3	н	Н	L	L				
4	L	L	Н	L				
5	н	L	Н	L				
6	L	Н	Н	L				
7	н	Н	Н	L				
8	L	L	L	Н				
9	н	L	L	Н				

 $\underline{\text{NO}\text{TE}}:$ Output Q_0 is connected to Input CP_1 for BCD count.

LS92	
TRUTH TABLE	

COUNT		PUT		
COUNT	Q0	Q ₁	Q2	Q_3
0	L	L	L	L
1	н	L	L	L
2 3	L	Н	L	L
3	н	Н	L	L
4	L	L	Н	L
5	н	L	Н	L
6	L	L	L	Н
7	н	L	L	н
8	L	Н	L	н
9	н	Н	L	н
10	L	L	Н	Н
11	н	L	Н	Н
			stad to	Input

 $\underline{\text{NO}\text{TE}}:$ Output Q_0 is connected to Input $\text{CP}_1.$

LS93 TRUTH TABLE

COUNT				
COUNT	Q ₀	Q ₁	Q2	Q3
0	L	L	L	L
1	н	L	L	L
2	L	Н	L	L
3	н	Н	L	L
4	L	L	Н	
5	н	L	Н	L
6	L	Н	Н	L
7	н	Н	Н	L
8	L	L	L	Н
9	н	L	L	Н
10	L	Н	L	Н
11	н	Н	L	Н
12	L	L	Н	Н
13	н	L	Н	н
14	L	Н	Н	н
15	н	Н	Н	н

 $\underline{\text{NO}\text{TE}}:$ Output Q_0 is connected to Input $\text{CP}_1.$

GUARANTEED OPERATING RANGES

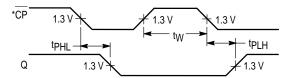
Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
т _А	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
IOH	Output Current — High	54, 74			-0.4	mA
IOL	Output Current — Low	54 74			4.0 8.0	mA

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

			Limits		Limits				
Symbol	Parameter		Min	Тур	Max	Unit	Test Co	onditions	
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input All Inputs	HIGH Voltage for	
	Input LOW Voltage	54			0.7	v	Guaranteed Input	LOW Voltage for	
VIL	input LOW Voltage	74			0.8	v	All Inputs		
VIK	Input Clamp Diode Voltage			-0.65	-1.5	V	$V_{CC} = MIN, I_{IN} =$	–18 mA	
Varia		54	2.5	3.5		V	V _{CC} = MIN, I _{OH} = MAX, V _{IN} = V _{IH}		
VOH	Output HIGH Voltage	74	2.7	3.5		V	or VIL per Truth T		
		54, 74		0.25	0.4	V	I _{OL} = 4.0 mA	$V_{CC} = V_{CC} MIN,$ $V_{IN} = V_{IL} or V_{IH}$	
VOL	Output LOW Voltage	74		0.35	0.5	V	I _{OL} = 8.0 mA	per Truth Table	
					20	μA	$V_{CC} = MAX, V_{IN}$	= 2.7 V	
ЧΗ	Input HIGH Current				0.1	mA	$V_{CC} = MAX, V_{IN}$	= 7.0 V	
ΙIL	Input LOW Current <u>MS</u> , MR <u>CP</u> 0 <u>CP1</u> (LS90, LS92) CP1 (LS93)				-0.4 -2.4 -3.2 -1.6	mA	V _{CC} = MAX, V _{IN}	= 0.4 V	
IOS	Short Circuit Current (Note 1)		-20		-100	mA	V _{CC} = MAX		
ICC	Power Supply Current				15	mA	V _{CC} = MAX		

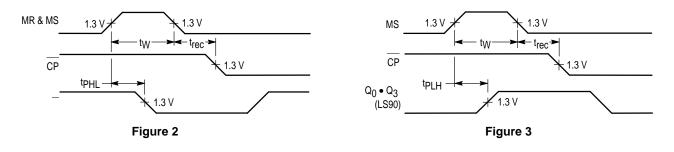
Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS ($T_A = 25^{\circ}C$, $V_{CC} = 5.0$ V, $C_L = 15$ pF)


			Limits								
			LS90		LS92			LS93			
Symbol	Parameter	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
fMAX	CP0 Input Clock Frequency	32			32			32			MHz
fMAX	CP ₁ Input Clock Frequency	16			16			16			MHz
^t PLH ^t PHL	Propagation Delay, CP ₀ Input to Q ₀ Output		10 12	16 18		10 12	16 18		10 12	16 18	ns
^t PLH ^t PHL	CP ₀ Input to Q ₃ Output		32 34	48 50		32 34	48 50		46 46	70 70	ns
^t PLH ^t PHL	CP ₁ Input to Q ₁ Output		10 14	16 21		10 14	16 21		10 14	16 21	ns
^t PLH ^t PHL	CP ₁ Input to Q ₂ Output		21 23	32 35		10 14	16 21		21 23	32 35	ns
^t PLH ^t PHL	CP ₁ Input to Q ₃ Output		21 23	32 35		21 23	32 35		34 34	51 51	ns
^t PLH	MS Input to Q_0 and Q_3 Outputs		20	30							ns
^t PHL	MS Input to Q_1 and Q_2 Outputs		26	40							ns
^t PHL	MR Input to Any Output		26	40		26	40		26	40	ns

AC SETUP REQUIREMENTS (T_A = 25°C, V_{CC} = 5.0 V)

			Limits					
		LS	LS90		LS92		LS93	
Symbol	Parameter	Min	Max	Min	Мах	Min	Мах	Unit
tW	CP0 Pulse Width	15		15		15		ns
t _W	CP ₁ Pulse Width	30		30		30		ns
tW	MS Pulse Width	15						ns
tW	MR Pulse Width	15		15		15		ns
t _{rec}	Recovery Time MR to CP	25		25		25		ns


RECOVERY TIME (trec) is defined as the minimum time required between the end of the reset pulse and the clock transition from HIGH-to-LOW in order to recognize and transfer HIGH data to the Q outputs

AC WAVEFORMS

Figure 1

*The number of Clock Pulses required between the tPHL and tPLH measurements can be determined from the appropriate Truth Tables.

FAST AND LS TTL DATA