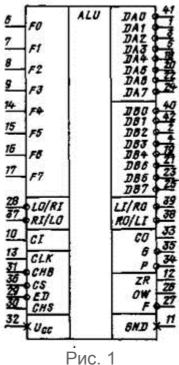
София ул. "Сердика: N:15 тел. 02-983-19-92 / 087-7144-087

Микросхема КР1802ВС1


Микросхема КР1802ВС1 микропроцессорной секции (МС) — 8-разрядная наращиваемая секция устройства обработки данных, предназначена для выполнения следующих операций:

арифметическое сложение и вычитание в дополнительном коде; логические операции конъюнкции, дизъюнкции, инверсии и сложение по модулю

арифметические, логические и циклические сдвиги вправо и влево на один разряд.

При выполнении перечисленных операций возможно производить многочисленные операции маскирования содержимым регистра расширения отдельных разрядов входных данных.

По результату операции вырабатываются признаки равенства 0 результата и признак переполнения (в операциях сложения, вычитания, сдвига влево). При соединении нескольких микросхем МС можно производить последовательный и ускоренный перенос, операции обработки байтов, широкий набор операций сдвигов, включая и расширенные сдвиги, т. е. сдвиг двойного слова совместно с регистром расширения без внешних дополнительных схем с выработкой признаков результата только в выбранных кристаллах. Условное графическое обозначение микросхемы приведено на рис. 1, назначение выводов — в табл.1, структурная схема по казана на рис..2.

Вывод	Обозначение	Тип вывода	Функциональное назначение выводов
41, 1, 3, 5, 18 20, 22, 24	,DA0—DA7	Входы/выходы	Информация
40, 42,2, 4, 19,21, 23, 25	DB0—DB7	Входы/выходы	Информация
6-9,	F0—F7	Входы	Код микрокоманды
14—17			
28	LO/RI	Выход/вход	Сдвиг влево/вправо САЛУ
37	RI/LO	Вход/выход	Сдвиг вправо/влево СРР
39	LI/RO	В,ход/выход	Сдвиг влево/вправо САЛУ или перенос из 3-го разряда АЛУ
38	RO/LI	Выход/вход	Сдвиг вправо/влево СРР
10	CI	Вход	Перенос
33	CO	Выход	Перенос
13	CLK	Вход	Синхронизация
31	СНВ	Вход	Управление инверсией старшего разряда
36	CS	Вход	Выборка кристалла
29	ED	Вход	Разрешение выдачи информации
30	CHS	Вход	Выборка старшего кристалла
35	G	Выход	Генерация переноса
34	P	Выход	Распространение переноса
12	ZR	Выход	Признак равенства 0 результата
26	OW	Выход	Признак переполнения
27	F	Выход	Выдвигаемые разряды АЛУ или выходной перенос CO
32	Ucc	<u> </u>	Напряжение питания +5 B
11	GND	<u> </u>	Общий

В состав микросхемы входят следующие основные узлы: У1 — регистр данных В (РВ); У2 — регистр данных А (РА); У3 — мультиплексор выбора операнда (МВО); У4 — узел подготовки данных В (УПВ); У5 — узел подготовки данных А (УПА); У6 — арифметико-логическое устройство (АЛУ); У7 — дешифратор микрофункций операции; У8 — буферная схема сигнала синхронизации; У9 — буферная схема сигнала выбора микросхемы; УЮ — сдвигатель арифметико-логического устройства (САЛУ); У11 — сдвигатель регистра расширения (СРР); У12 — регистр расширения (РР); У13 — выходной буферный каскад В (ВБВ); У14 — выходной буферный каскад А (ВБА); У15 — вентиль стробирующего сигнала выдачи данных; У16 — схема признака нуля (СПН); У17 — дешифратор микрофункций модификации.

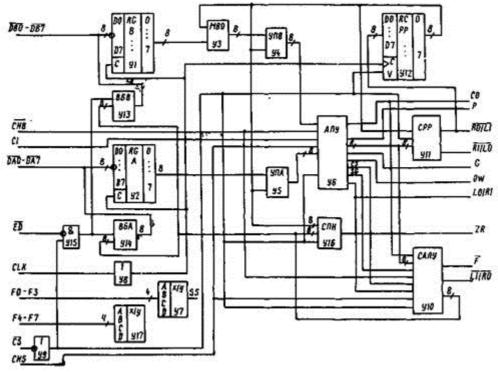


Рис. 2

При описании МС используются следующие условные обозначения: L0—L7 — информация на выходах АЛУ; R0—R7 — информация на выходах САЛУ; SG — сигнал из АЛУ, образующийся из старших разрядов PA, PB; MO—M7 — информация на первом входе АЛУ; К0—K7 — информация на втором входе АЛУ; 55 — признак операции вычитания в АЛУ.

Разряды A7, B7, L7, R7 — старшие разряды информации.

Разряды микроинструкции F0—F3 определяют операцию АЛУ с данными, поступающими из PA и MBO. Эти операции перечислены в табл. 12.3. Разряды микроинструкции F4— F7 определяют операции модификаций МС (табл. 12.4). К этим операциям относятся.

выбор операнда в МВО, т. е. операция с РВ или РР;

разрешение операции маскирования;

различные операции сдвигов.

Выражение L — f(A, B, P) определяет одну из операций АЛУ при наличии маскирования данных из PA и PB содержимым PP. операции АЛУ при L = f(A, B, P) представлены в колонке L = f(A, B, P) табл. 12.3.

В колонке «R7—R0 — результат операции САЛУ» (см. табл. 12.4) показан результат операции сдвига. Эта информация при СS Л Д??>=1 выдается на магистрали DA7— DAO, DB7—DB0 В колонках LI/RO, LO/RI, ROjLI, R1/LO табл. 12.4 показана информация, появляющаяся на этих выводах при различных кодах на шинах F4—F7, CS, CHB. Если в соответствующих строках этих колонок стоит знак <rZ», то это означает, что выход схемы находится в 3-м (высокоомном) состоянии.

В операциях, где нет сдвига, на вывод LIIRO выдается значение выходного переноса из 3-го разряда АЛУ (СЗ).

Во всех случаях, если кристалл не выбран (C5 = 0), при сдвигах влево происходит сквозное распространение информации через СРР и САЛУ с вывода LI/RO на LO/RI и с вывода RO/LI на R1/L0, а при сдвигах вправо — переход информации с вывода RI/LO на RO/LI и с вывода LO/RI на LI/RO.

В колонках признаков F, OW и ZR показаны значения признаков, которые вырабатываются при различных операциях. Все выводы признаков — с открытым коллектором. Если CS=0, то при подключении внешнего резистора на этих выводах будет напряжение высокого уровня, что позволит использовать монтажное объединение.

Если кристалл выдраи, то в СПН анализируется результат САЛУ. И если разрешено маскирование (код на шине F4, F5, F6, F7= = 1111), результат САЛУ маскируется разрядами PP, равными 0. Если все разряды маскированного результата равны 0, то на выводе ZR — напряжение высокого уровня. Если операция без маскирования, то на равенство 0 анализируются все разряды САЛУ.

На вывод F в модификациях без сдвига (если АЛУ выполняет операцию арифметического сложения) выдается значение переноса в прямом коде. Управляет инверсией выходного переноса внутренний признак 55, который равен 1 при вычитании и 0 при сложении и логических операциях.

При операции сдвига на выход F выдается значение выдвигаемого разряда в обратном коде.

В колонках LI/RO, LO/RI, R1JLO, RO/L1 табл. 12.4 записаны логические условия образования соответствующих сигналов. Формирование сигналов G, CO и P АЛУ зависит от значения управления на шине CS. Если кристалл выбран (на шине напряжение низкого уровня), то на шину CO поступает значение выходного переноса из старшего разряда в прямом коде. Если кристалл не выбран, то происходит передача переноса со входа C/ на выход CO и устанавливается G = I, P=0 для обеспечения распространения входного переноса через схему ускоренного переноса В АЛУ вырабатывается также перенос из младшей тетрады. Значение этого переноса выдается в операциях модификации без сдвига по выходу LI/RO и может быть использовано для организации внешнего корректора при реализации операции десятичной арифметики.