INTEGRATED CIRCUITS

Product data Supersedes data of 1994 Aug 31 File under Integrated Circuits, IC11 Handbook 2001 Aug 03

NE527

DESCRIPTION

The NE527 is a high-speed analog voltage comparator which, for the first time, mates state-of-the-art Schottky diode technology with the conventional linear process. This allows simultaneous fabrication of high speed TTL gates with a precision linear amplifier on a single monolithic chip. The NE527 is similar in design to the Philips Semiconductors NE529 voltage comparator except that it incorporates an "Emitter-Follower" input stage for extremely low input currents. This opens the door to a whole new range of applications for analog voltage comparators.

FEATURES

- 15 ns propagation delay
- Complementary output gates
- TTL or ECL compatible outputs
- Wide common-mode and differential voltage range
- Typical gain of 5000

PIN CONFIGURATIONS

Figure 1. Pin Configuration

APPLICATIONS

- A/D conversion
- ECL-to-TTL interface
- TTL-to-ECL interface
- Memory sensing
- Optical data coupling

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG #
14-Pin Plastic Dual In-Line Package (DIP)	0 °C to +70 °C	NE527N	SOT27-1
14-Pin Small Outline (SO) Package	0 °C to +70 °C	NE527D	SOT108-1

EQUIVALENT SCHEMATIC

Figure 2. Equivalent Schematic

NE527

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V ₁ +	Positive supply voltage	+15	V
V ₁ -	Negative supply voltage	-15	V
V ₂ +	Gate supply voltage	+7	V
V _{OUT}	Output voltage	+7	V
V _{IN}	Differential input voltage	±5	V
V _{CM}	Input common mode voltage	±6	V
PD	Max power dissipation ¹ 25 °C ambient (still air) N package D package	1420 1040	mW mW
T _{amb}	Operating temperature range	0 to +70	°C
T _{stg}	Storage temperature range	-65 to +150	°C
T _{sld}	Lead soldering temperature (10sec max)	+230	°C

NOTES:

1. Derate above 25 °C, at the following rates: N package 11.4 mW/°C D package 8.3 mW/°C

BLOCK DIAGRAM

Figure 3. Block Diagram

Product data

NE527

DC ELECTRICAL CHARACTERISTICS

 $V_1\text{+}$ = 10V; $V_1\text{-}$ = –10 V; $V_2\text{+}$ = +5.0 V; unless otherwise specified.

0/4000	DADAMETED			NE527			
SYMBOL	PARAMETER	TEST CONDITIONS	Min	Тур	Max	UNIT	
Input char	acteristics	·	•				
M	Input offset voltage @ 25 °C				6		
VOS	over temperature range			10	mv		
	Input bias current @ 25 °C				2		
BIAS	over temperature range				4	μΑ	
	Input offset current @ 25 °C				0.75	μΑ	
IOS	over temperature range	V _{IN} = 0 V			1	μA	
V _{CM}	Common-mode voltage range		-5		+5	V	
Gate chara	acteristics	·					
V _{OUT}	Output Voltage "1" State "0" State	V ₂ + = 4.75 V; I _{SOURCE} = -1 mA V ₂ + = 4.75 V; I _{SINK} = 10 mA	2.7	3.3	0.5	V V	
	Strobe inputs "0" Input current ¹ "1" Input current @ 25 °C ¹ Over temperature range "0" Input voltage "1" Input voltage	$V_{2}+=5.25 V; V_{STROBE}=0.5 V$ $V_{2}+=5.25 V; V_{STROBE}=2.7 V$ $V_{2}+=5.25 V; V_{STROBE}=2.7 V$ $V_{2}+=4.75 V$ $V_{2}+=4.75 V$	2.0		2 100 200 0.8	mA μA μA V V	
I _{SC}	Short-circuit output current	V ₂ + = 5.25 V;V _{OUT} = 0 V	-18		-70	mA	
Power sup	ply requirements						
V ₁ + V ₁ - V ₂ +	Supply voltage		5 6 4.75	5	10 -10 5.25	V V V	
₁ + ₁ - ₂ +	Supply current	V_{1} = 10 V; V_{1} = -10 V V_{2} = 5.25 V Over temp. Over temp. Over temp.			5 10 20	mA mA mA	

NOTE:

1. See Logic Function Table.

AC ELECTRICAL CHARACTERISTICS

 T_{amb} = 25 °C, unless otherwise specified. (See AC test circuit)

SYMPOL	DADAMETED	TEST CONDITIONS		LINUT		
STWIDOL	FARAMETER	TEST CONDITIONS	Min	Тур	Max	
	Transient response propagation delay time					
t _{PLH}	Low-to-High	$V_{IN} = \pm 100 \text{ mV step}$		16	26	ns
t _{PHL}	High-to-Low			14	24	ns
	Delay between output A and B			2	5	ns
	Strobe delay time					
t _{ON}	Turn-on time			6		ns
t _{OFF}	Turn-off time			6		ns

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Typical Performance Characteristics

RESPONSE TIME TEST CIRCUIT

Figure 5. Response Time Test Circuit

NE527

NE527

APPLICATIONS

One of the main features of the device is that supply voltages (V₁+, V₁-) need not be balanced, as in the following diagrams. For proper operation, however, negative supply (V₁-) should always be at least 6 V more than the ground terminal (Pin 6). Input common-mode

range should be limited to values of 2 V less than the supply voltages (V₁+ and V₁-) up to a maximum of ± 5 V as supply voltages are increased. It is also important to note that Output A is in phase with Input A and Output B is in phase with Input B.

LOGIC FUNCTION

V _{ID} (A ⁺ , B ⁻)	STROBE A	STROBE B	OUTPUT A	OUTPUT B	COMMENT
$V_{ID} \leq -V_{OS}$	Н	Х	L	Н	Read I _{IHA} , I _{ILB}
$-V_{OS} < V_{ID} < V_{OS}$	Н	Н	Undefined	Undefined	
$V_{ID} \ge V_{OS}$	Х	Н	Н	L	Read I _{ILA} , I _{IHB}
Х	L	L	Н	Н	

TYPICAL APPLICATIONS

Figure 6. Typical Applications

DIP14: plastic dual in-line package; 14 leads (300 mil)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	с	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	М _Н	w	max.
mm	4.2	0.51	3.2	1.73 1.13	0.53 0.38	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.2
inches	0.17	0.020	0.13	0.068 0.044	0.021 0.015	0.014 0.009	0.77 0.73	0.26 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN			
VERSION	IEC	JEDEC	EIAJ		PROJECTION	1350E DATE
SOT27-1	050G04	MO-001	SC-501-14			-95-03-11 99-12-27

NE527

NE527

9

2001 Aug 03

NE527

NOTES

Data sheet status

Data sheet status ^[1]	Product status ^[2]	Definitions
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825

7 24825

Date of release: 12-01

For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com

Document order number:

9397 750 09203

Let's make things better.

© Koninklijke Philips Electronics N.V. 2001

All rights reserved. Printed in U.S.A.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.